Acknowledgment. This research was generously supported by a grant from the National Cancer Institute (Grant CA 26830). We thank Professor Ch. Tamm for providing an authentic sample of natural verrucarol.

Supplementary Material Available: Spectroscopic data (${ }^{1} \mathrm{H}$ NMR, IR, mass), physical constants, and combustion analytical or high-resolution mass spectral data are reported for all synthetic intermediates (7 pages). Ordering information is given on any current masthead page.
(15) Natural verrucarol crystallized from hexane-benzene had mp $160-161^{\circ} \mathrm{C}$ (lit. mp 158-159 ${ }^{\circ} \mathrm{C}$ (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); see: Cole, R. J.; Cox, R. H. "Handbook of Toxic Fungal Metabolites"; Academic Press: New York, 1981; p 157).
(16) This synthesis is comparable in length (21 steps from (methylcyclopentadienyl)trimethylsilane)) to that reported by Schlessinger (20 steps from 2-methylcyclopentane-1,3-dione). The synthesis recently reported by Trost ${ }^{17}$ also proceeds in 20 steps from 2 -methylcyclopentane-1,3-dione.
(17) A synthesis of racemic verrucarol was published by Trost after our paper was submitted for publication (Trost, B. M.; McDougal, P. G. J. Am. Chem. Soc. 1982, l04, 6110). This group reports a melting point of 165.5-167 ${ }^{\circ} \mathrm{C}$ (ether- CHCl_{3}) for the synthetic trichothecene.

Incorporating Metal-Metal Multiple Bonds into Heterometallic Chains:

Bis(tris(trimethylstannyl)tin)tetrakis(dimethylamido)dimolybdenum and -ditungsten and Related Compounds

M. J. Chetcuti, M. H. Chisholm,* H. T. Chiu, and J. C. Huffman

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 47405

Received September 23, 1982
There is now a fairly extensive body of chemistry surrounding compounds containing metal-to-metal multiple bonds. ${ }^{1}$ To our knowledge, however, compounds containing the connectivity
$\mathrm{M}^{\prime}-\mathrm{M} \equiv \mathrm{M}-\mathrm{M}^{\prime}$ or $\mathrm{M}^{\prime}-\mathrm{M}-\mathrm{M}-\mathrm{M}^{\prime}$, wherein a central met-al-metal triple or quadruple bond supports metal-metal bonds to different metal atoms, have not been reported. Compounds of this type could play a significant role in the development of polynuclear/cluster chemistry. We here report our preparation and characterization of compounds of formula $1,2-\mathrm{M}_{2}(\mathrm{Sn}-$ $\left.\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ which contain the metal atom connectivity shown in I .

Previous work has shown that $\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}{ }^{2}$ compounds (M $=\mathrm{Mo}, \mathrm{W})$ are labile toward metathetic reactions described by the generalized equation (1), where $\mathrm{Y}=\mathrm{R}$ (alkyl), ${ }^{3} \mathrm{OR}, \mathrm{NR}_{2}$, and SR. ${ }^{4}$

$$
\begin{equation*}
\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}+2 \mathrm{LiY} \rightarrow \mathrm{M}_{2} \mathrm{Y}_{2}\left(\mathrm{NMe}_{2}\right)_{4}+2 \mathrm{LiCl} \tag{1}
\end{equation*}
$$

We now find that employing (THF) ${ }_{3} \mathrm{LiSn}\left(\mathrm{SnMe}_{3}\right)_{3}{ }^{5}$ in eq 1

[^0]

Figure 1. ORTEP view of the $\mathrm{Mo}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ molecule giving the atom numbering scheme used for the metal atoms. Atoms are represented by ellipsoids drawn to include 50% probability of thermal displacement. Pertinent bond distances (\AA) and angles (deg) are as follows: $\mathrm{Mo}-\mathrm{Mo}=2.201(2) ; \mathrm{Mo}(1)-\mathrm{Sn}(3)=2.783$ (2); $\mathrm{Mo}(2)-\mathrm{Sn}(7)=2.774$ (2); $\operatorname{Sn}(3)-\operatorname{Sn}(4),-\operatorname{Sn}(5),-\operatorname{Sn}(6)=2.775$ (2), 2.774 (2), 2.779 (2); $\operatorname{Sn}(7)-\operatorname{Sn}(8),-\operatorname{Sn}(9),-\operatorname{Sn}(10)=2.768$ (2), 2.777 (2), 2.774 (2); Mo-N $=1.95$ (1) (averaged); $\mathrm{Sn}(3)-\mathrm{Mo}(1)-\mathrm{Mo}(2)=100.6$ (1); $\mathrm{Sn}(7)-\mathrm{Mo}-$ (2) $-\mathrm{Mo}(1)=100.7(1), \mathrm{Mo}-\mathrm{Mo}-\mathrm{N}=105$ (2) (averaged) .
gives the new compounds $\mathrm{M}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ as orange, hydrocarbon-soluble, air-sensitive crystalline solids. ${ }^{6}$

A view of the molecular structure of the molybdenum compound, deduced from a single-crystal X-ray study, ${ }^{7}$ is shown in Figure 1. The geometry about each tin atom is close to that expected for its use of essentially tetrahedral hybrid orbitals, while the central $\mathrm{Mo}_{2} \mathrm{Sn}_{2} \mathrm{~N}_{4}$ skeleton is akin to that observed in a number of other molecules of formula $\mathrm{M}_{2} \mathrm{X}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ having the anti conformation, e.g., $\mathrm{Mo}_{2} \mathrm{X}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$, where $\mathrm{X}=\mathrm{Me}^{8}$ and $\mathrm{Cl}^{2}{ }^{2}$ The distance associated with the $\mathrm{Mo} \equiv \mathrm{Mo}$ bond and the $\mathrm{Mo}-\mathrm{Sn}$ and $\mathrm{Sn}-\mathrm{Sn}$ bonds are all well within the range expected on the basis of previous structural studies. ${ }^{9}$

In toluene- d_{8} and benzene $-d_{6}$, the anti conformation is apparently maintained to the exclusion of the gauche rotamer. ${ }^{10}$
(6) Reactions were carried out by using standard procedures for the manipulation of air-sensitive materials. Preparation of $\mathrm{Mo}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe} 3_{3}\right)_{3}\right)_{2}$ $\left(\mathrm{NMe}_{2}\right)_{4}:\left(\mathrm{THF}_{3}\right)_{3} \mathrm{LiSn}\left(\mathrm{SnMe}_{3}\right)_{3}(1.05 \mathrm{~g}, 1.26 \mathrm{mmol})$ dissolved in hexane (20 mL) was added to $\mathrm{Mo}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}(0.277 \mathrm{~g}, 0.631 \mathrm{mmol})$ suspended in hexane (20 mL). Upon addition, the mixture turned orange with the formation of an orange precipitate. After the solution stirred for 1 h at room temperature, the solution was filtered, and the solids were washed with hexane (10 mL , five times) until all the orange solids were extracted into the filtrate. The solution was then placed in a refrigerator at $-15^{\circ} \mathrm{C}$, and the orange crystals, which formed over a period of 12 h , were collected by filtration and dried in vacuo ($0.45 \mathrm{~g}, 44 \%$ based on Mo). $\mathrm{W}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ was prepared similarly. Satisfactory elemental analyses were obtained for both compounds. Crystals of the molybdenum compound suitable for X -ray studies were obtained by recrystallization from toluene.
(7) Crystal data for the $\mathrm{Mo}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ molecule at $-162^{\circ} \mathrm{C}$: space group $P b n_{1}, a=14.600$ (4) $\AA, b=31.737$ (13) $\AA, c=13.545$ (4) \AA, $Z=4, d_{\text {calcd }}=1,876 \mathrm{~g} \mathrm{~cm}^{-3}$. Of the 4330 unique intensities collected by using Mo $\mathrm{K} \alpha, 6^{\circ}<2 \theta<45^{\circ}$, the 4105 reflections having $F>2.33 \sigma(F)$ were used in the full-matrix refinement. The final residuals are $R_{F}=0.046$ and $R_{w F}$ $=0.049$. The unit cell contains two toluene molecules. One molecule (C -(41)-C(47)) is well ordered while the other ($\mathrm{C}(49)-\mathrm{C}(57)$) is disordered.
(8) Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Murillo, C. A. Inorg. Chem. 19788 17, 2338.
(9) $\mathrm{Mo}-\mathrm{Sn}=2.753$ (3) \AA in $\left.\mathrm{Cl}_{2} \mathrm{MeSnMo(CO}\right)_{3}$ (bpy): Elder, M.; Graham, W. A. G.; Hall, D.; Kumner, R. J. Am. Chem. Soc. 1968, 90, 2189. $\mathrm{Sn}-\mathrm{Sn}=2.77$ (1) \AA in $\left(\mathrm{SnPh}_{2}\right)_{6}$: Olson, D. H.; Rundle, R. E. Inorg. Chem. 1963, 2, 1310. $\mathrm{Mo}-\mathrm{Mo}=2.203$ (1) \AA in $1,2-\mathrm{Mo}_{2} \mathrm{Et}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$: ref 3. For an extensive listing of $\mathrm{Mo}=\mathrm{Mo}$ bond distances in $\mathrm{Mo}_{2} \mathrm{X}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ compounds, see: Chisholm, M. H. Transition Met. Chem. 1978, 3, 321.

Rotations about $\mathrm{Mo}-\mathrm{N}$ bonds may be monitored as a function of temperature on the ${ }^{1} \mathrm{H}$ NMR time scale, which allows an estimate of ΔG^{*}, the barrier to rotation, to be placed at 16.5 kcal mol^{-1}. This is comparable to that in $\mathrm{Mo}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$.

Hexane solutions of $\mathrm{W}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ and $(\mathrm{THF})_{3} \mathrm{LiSi}\left(\mathrm{SiMe}_{3}\right)_{3}{ }^{\text {11 }}$ (2 equiv) yield an orange crystalline compound that, on the basis of spectroscopic characterization, is formulated as the silicon analogue $1,2-\mathrm{W}_{2}\left(\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$. In similar reactions, $1,2-\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ compounds have been found to react with potassium and tetra- n-butylammonium salts ${ }^{12}$ of $\mathrm{CpFe}(\mathrm{CO})_{2}{ }^{-}$in toluene to give orange microcrystalline compounds that, on the basis of infrared ${ }^{13}$ and ${ }^{1} \mathrm{H}$ NMR characterization, are formulated as $1,2-\mathrm{M}_{2}\left(\mathrm{Fe}(\mathrm{Cp})(\mathrm{CO})_{2}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ compounds, where $\mathrm{M}=\mathrm{Mo}$ and W . These compounds contain the connectivity $\mathrm{Fe}-\mathrm{M} \equiv$ $\mathrm{M}-\mathrm{Fe}$, and in toluene $-d_{8}$, they exist as a mixture of anti and gauche rotamers with respect to the central $\mathrm{M}_{2} \mathrm{Fe}_{2} \mathrm{~N}_{4}$ moeity in the ratio $1: 2$, respectively.

This work leads us to predict that it should be possible to subtend a wide variety of metal-metal bonds from dinuclear centers containing the $(\mathrm{M} \equiv \mathrm{M})^{6+}$ unit where $\mathrm{M}=\mathrm{Mo}$ and $\mathrm{W} .{ }^{14}$

Registry No. $\mathrm{Mo}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}, 84521-33-5 ; \mathrm{W}_{2}(\mathrm{Sn}-$ $\left.\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}, 84521-34-6 ; 1,2-\mathrm{Wa}\left(\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}$, 84521-35-7; $1,2-\mathrm{Mo}_{2}\left(\mathrm{Fe}(\mathrm{Cp})(\mathrm{CO})_{2}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}, 84537-06-4 ; 1,2-\mathrm{W}_{2}(\mathrm{Fe}-$ $\left.(\mathrm{Cp})(\mathrm{CO})_{2}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}, 84521-36-8 ; \mathrm{Mo}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}, 63301-82-6$; $\mathrm{W}_{2} \mathrm{Cl}_{2}\left(\mathrm{NMe}_{2}\right)_{4}, 63301-81-5 ;(\mathrm{THF})_{3} \mathrm{LiSn}\left(\mathrm{SnMe}_{3}\right)_{3}, 60552-34-3$; (THF) ${ }_{3} \mathrm{LiSi}\left(\mathrm{SiMe}_{3}\right)_{3}, 81859-95-2 ; \mathrm{KCpFe}(\mathrm{CO})_{2}, 60039-75-0 ;\left[\mathrm{Bu}_{4} \mathrm{~N}\right]-$ $\mathrm{CpFe}(\mathrm{CO})_{2}, 65836-70-6$.

Supplementary Material Available: Listings of fractional coordinates and isotropic thermal parameters (3 pages). Ordering information is given on any current masthead page.
(10) ${ }^{1} \mathrm{H}$ NMR data ($220 \mathrm{MHz}, 16{ }^{\circ} \mathrm{C}$, toluene- d_{8}) for $\mathrm{Mo}_{2}(\mathrm{Sn}-$ $\left.\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}: \delta(\mathrm{NMe}) 3.96(12 \mathrm{H}), 2.50(12 \mathrm{H}) ; \delta\left(\mathrm{SnMe}_{3}\right) 0.38 \mathrm{ppm}$ $(54 \mathrm{H}) . \quad J\left({ }^{119} \mathrm{Sn}-\mathrm{C}-\mathrm{H}\right)=45.4 \mathrm{~Hz}, J\left({ }^{117} \mathrm{Sn}-\mathrm{C}-\mathrm{H}\right)=43.6 \mathrm{~Hz}$, and $J-$ $\left({ }^{117,119} \mathrm{Sn}-\mathrm{Sn}-\mathrm{C}-\mathrm{H}\right)=9.4 \mathrm{~Hz}$. For $\mathrm{W}_{2}\left(\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{4}: \delta(\mathrm{NMe}) 4.00$ $(12 \mathrm{H}), 2.38(12 \mathrm{H}) ; \delta\left(\mathrm{SnMe}_{3}\right) 0.40 . J\left({ }^{19} \mathrm{Sn}-\mathrm{C}-\mathrm{H}\right)=45.6 \mathrm{~Hz}, J\left({ }^{17} \mathrm{Sn}-\right.$ $\mathrm{C}-\mathrm{H})=44.0 \mathrm{~Hz}$, and $J\left({ }^{117,119} \mathrm{Sn}-\mathrm{Sn}-\mathrm{C}-\mathrm{H}\right)=9.8 \mathrm{~Hz}$.
(11) Gutekunst, G.; Brook, A. G. J. Organomet. Chem. 1982, 225, 1
(12) Ellis, J. E.; Flom, E. A. J. Organomet. Chem. 1975, 99, 213.
(13) The IR spectrum recorded as a Nujol mull shows two $\nu(\mathrm{C} \equiv \mathrm{O})$ bands: 1950 (s) and 1892 (vs) cm^{-1} ($\mathrm{M}=\mathrm{Mo}$); 1953 (s) and 1885 (vs) cm^{-1} ($\mathrm{M}=$ W).
(14) We thank the National Science Foundation and the Wrubel Computing Center for support.

Stereochemistry of the Electrophilic Fragmentation-Cyclization of Allenic Sulfones and Sulfinates: Stereoselective Synthesis of Chiral α, β-Unsaturated γ-Sultines

S. Braverman* and Y. Duar

Department of Chemistry, Bar-Ilan University Ramat Gan 52100, Israel Received June 16, 1982

The electrophilic cyclization of a variety of functionalized allenes to heterocyclic systems ${ }^{1-4}$ has received considerable attention due to its synthetic utility and remarkable stereoselectivity. ${ }^{1 a, f, 2,3 b, 4 a}$ In a continuation to our previous report on the electrophilic

[^1]Table I. Cyclization of Chiral Allenic Sulfones and Sulfinates to Chiral γ-Sultines

substrate	$\begin{gathered} {[\alpha]^{25} \mathrm{D}} \\ \operatorname{deg} \end{gathered}$	X^{+}	γ-sultine	$[\alpha]^{25} \mathrm{D}, \mathrm{deg}$	yield, \%
$(-)-2^{\text {a }}$	-97.6	Br^{+}	(-)-9	-73.7 (c 2.7)	87
(+)-2 ${ }^{\text {a }}$	+41.7	Br^{+}	(+)-9	+14.6 (c 1)	85
(+) $-2^{\text {b }}$	+32.0	MeS^{+}	(+)-11	+20.5 (c 2.2)	35
$(-) 7^{\text {c }}$	-47.5	Br^{+}	$(+)-9$	+16.9 (c 1.2$)$	87
$(-)-8^{d}$	-58.5	Br^{+}	$(+)-10$	+15.6 (c 3.6) ${ }^{f}$	55
$(-)-7^{b}$	-47.5	MeS^{+}	$(+)-11$	+23.7 (c 6.2)	80
$(-)-8^{\text {b }}$	-63.5	MeS^{+}	(+)-12	+15.9 (c 6.1)	73
$\mathrm{CCl}_{4} \text { at } 25^{\circ} \mathrm{C}, \quad{ }^{b} \mathrm{In} \mathrm{CH}_{2} \mathrm{Cl}_{2} \text { at }-20{ }^{\circ} \mathrm{C} . \quad{ }^{c} \mathrm{ln} \mathrm{CCl}_{4} \text { at }-10$					

Chart I

${ }_{(R)}{ }^{\mathrm{A}}{ }_{-(S)}^{\mathrm{R}} \mathrm{S}$

${ }_{(S)^{\mathrm{C}}{ }_{-(R)}^{\mathrm{A}} \mathrm{S}}$

${ }_{(S)}{ }^{\mathrm{C}} \mathrm{B}_{-(S)}^{\mathrm{S}}$

${ }_{(R)} \stackrel{\mathrm{C}}{-(R)^{\mathrm{S}}}$
fragmentation-cyclization of allenic sulfones and sulfinates to α, β-unsaturated γ-sultines, ${ }^{5}$ we have investigated the stereochemistry of this reaction.

Treatment of $(R)-(+)$-1-butyn-3-ol $\left((+)-1^{6},[\alpha]_{\mathrm{D}}^{25}+17.7^{\circ}(c\right.$ 1.0, dioxane)) and of (S)-(-)-1, ${ }^{6}[\alpha]^{25}{ }_{\mathrm{D}}-49.4^{\circ}$ (c3.2, dioxane) with sulfur dichloride, as previously described, ${ }^{7}$ afforded sulfinates $(+)-2\left([\alpha]^{25}{ }_{\mathrm{D}}+41.7^{\circ}(c 1.0\right.$, acetone, yield $\left.80 \%)\right)$ and $(-)-2\left([\alpha]^{25}{ }_{\mathrm{D}}\right.$ -97.6° (c 1.7 , acetone, yield 80%), respectively (eq 1).

Racemic γ-methyl- and γ-tert-butylallenyl tert-butyl sulfones $(7,8)^{8}$ were prepared by a previously reported method ${ }^{9}$ (eq 2).

1, $\mathrm{R}=\mathrm{Me}$
$3, \mathrm{R}=t-\mathrm{Bu}$

Optically active sulfones $(-)-7\left([\alpha]^{25} \mathrm{D}-47.5^{\circ}\right.$ (c 1.4, acetone, yield $70 \%)$) and $(-)-8\left([\alpha]^{25}-58.5^{\circ}(c 2.8\right.$, acetone, yield $66 \%)$, $\mathrm{mp} 87-88^{\circ} \mathrm{C}$) were obtained by the elegant method of kinetic resolution. ${ }^{10}$ Treatment of optically active sulfinate 2 and sulfones

[^2]
[^0]: (1) Cotton, F. A.; Walton, R. A. "Multiple Bonds Between Metal Atoms"; Wiley: New York, 1982.
 (2) Akiyama, M.; Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Murillo, C. A. Inorg. Chem. 1977, 16, 2407.
 (3) Chisholm, M. H.; Haitko, D. A.; Huffman, J. C. J. Am. Chem. Soc. 1981, $103,4046$.
 (4) Chisholm, M. H.; Corning, J. F.; Huffman, J. C. Inorg. Chem. 1982, 21, 286.
 (5) Brown, T. L.; Wells, W. L. J. Organomet. Chem. 1968, ll, 271.

[^1]: (1) (a) Jacobs, T. L.; Macomber, R.; Zunker, D. J. Am. Chem. Soc. 1967, 89, 7001. (b) Toda, F.; Komoda, T.; Akagi, K. Bull. Chem. Soc. Jpn. 1968, 41, 1493. (c) Hoff, S.; Brandsma L. Recl. Trav. Chim. Pays-Bas 1969, 88 , 845. (d) Gelin, R.; Gelin, S.; Albrand, M. Bull. Soc. Chim. Fr. 1972, 720. (e) Ollson, L.; Claeson, A. Synthesis 1979, 743. (f) Beaulieu, P. L.; Morisset, V. M.; Garratt, D. G. Tetrahedron Lett. 1980, 21, 129.
 (2) (a) Shingu, K.; Hagishita, S.; Nakagawa, M. Tetrahedron Lett. 1967, 4371. (b) Kresze, G.; Kloinastein, L.; Runge, W. Liebigs Ann. Chem. 1976, 979.
 (3) (a) Macomber, R. S.; Kennedy, E. R. J. Org. Chem. 1976, 4l, 3191. (b) Macomber, R. S. J. Am. Chem. Soc. 1977, 99, 3072.
 (4) (a) Musierowicz, S.; Wroblewski, A.; Krawczyk, H. Tetrahedron Lett. 1975, 437. (b) Angelov, C. M.; Vachkov, K. V. Ibid. 1981, 22, 2517.

[^2]: (5) (a) Braverman, S.; Reisman, D. J. Am. Chem. Soc. 1977, 99, 605. (b) Braverman, S.; Reisman, D. Tetrahedron Lett. 1977, 1753.
 (6) Weidmann, R.; Schoopfs, A.; Horeau, A. Bull. Soc. Chim. Fr. 1976, 645.
 (7) Braverman, S.; Segev, D. J. Am. Chem. Soc. 1974, 96, 1245.
 (8) All new compounds gave satisfactory elemental analysis and/or IR, NMR, and mass spectra data in accord with the assigned structures.
 (9) Braverman, S.; Mechoulam, H. Tetrahedron 1974, 30, 3883 and references cited therein.
 (10) Cinquini, M.; Colonna, S.; Cozzi, F. J. Chem. Soc., Perkin Trans. l 1978, 247.

